如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,AC=二倍根号三,∠ACD=60°,求四边形ABCD的面积.
1个回答

AB/sin∠ACB=AC/sin∠B,AD/sin∠ACD=AC/sin∠D

∵∠B﹢∠D=180°∴sin∠B=sin∠D

又∵AB=AD∴∠ACB=∠ACD=60°

S=1/2·BC·AC·sin∠BCA+1/2·DC·AC·sin∠DCA

∵∠ACB=∠ACD=60°,AC=2倍根号3

∴S=3/2﹙BC+DC﹚

cos∠ACD=﹙AC²+CD²-AD²﹚/2·AC·CD=1/2

cos∠ACB=﹙AC²+BC²-AB²﹚/2·AC·BC=1/2

12+CD²-AD²=2倍根号3×CD

12+BC²-AD²=2倍根号3×BC 两式作差

CD²-BC²=2倍根号3×﹙CD-BC﹚=﹙CD+BC﹚×﹙CD-BC﹚

∴CD+BC=2倍根号3

∴S=3/2·2倍根号3=3倍根号3