已知六边形ABCDEF的每个角都相等,MN⊥DE,求证:MN⊥AB.
1个回答

解题思路:先求出一个内角的度数,再连接AD,得出∠BAD=∠ADE根据内错角相等,两直线平行可得AB∥DE因为MN⊥DE,所以MN⊥AB.

证明:∵六边形的内角和是180°×(6-2),六个角都相等∴每个角为180°×(6-2)÷6=120°连接AD,四边形ABCD的内角和是180°×(4-2)=360°,∴∠BAD+∠ADC=360°-∠B-∠C=120°又∵∠ADE+∠ADC=∠D=120°∴∠BAD...

点评:

本题考点: 多边形内角与外角;平行线的判定与性质.

考点点评: 本题考查了多边形的内角与外角以及平行线的判定与性质,得出AB∥DE是本题的关键.