∫cos(x)dx(0到pai/2)
=lim(pai/2n)[cos(pai/2n)+cos(2pai/2n)+cos(3pai/2n)+……+cos((n-1)pai/2n)]
=lim(pai/2n)sin(pai/2n)*[cos(pai/2n)+cos(2pai/2n)+cos(3pai/2n)+……+cos((n-1)pai/2n)]/sin(pai/2n)
因为cos(kpai/2n)sin(pai/2n)=(1/2)[sin((k+1)pai/2n)-sin((k-1)pai/2n)]
所以原式=lim(1/2)(pai/2n)[sin(n-1)pai/2n+sin(npai/2n)-sin(pai/2n)]/sin(pai/2n)
=(1/2)[sin(pai/2)+sin(pai/2)-sin0]
=(1/2)(1+1-0)
=1