解题思路:令y=0,利用根的判别式判定顶点在x轴上,令x=-1求出a、b、c的关系式,判断②正确;a<0时,抛物线开口向下,根据二次函数的增减性写出不等式的解集,判断③错误;把已知等式整理得到a、b、c的关系式,然后判断出x=-3,从而得到④正确.
令y=0,则ax2+bx+c=0,
∵b2-4ac=0,
∴抛物线与x轴只有一个交点,即顶点一定在x轴上,故①正确;
x=-1时,a-b+c=0,
∴b=a+c,
∴b=a+c,则抛物线必经过点(-1,0)正确,故②正确;
a<0时,二次函数y=ax2+bx+c图象开口向下,
ax2+bx+c<0的解集为x<x1或x>x2,故③错误;
∵b=3a+[c/3],
∴9a-3b+c=0,
∴a(-3)2+b(-3)+c=0,
∴方程ax2+bx+c=0有一根为-3,故④正确.
综上所述,正确的是①②④.
故答案为:①②④.
点评:
本题考点: 二次函数的性质.
考点点评: 本题考查了二次函数的性质,主要利用了二次函数与x轴的交点问题,利用二次函数图象求解一元二次不等式,利用特殊值法确定函数值,综合题,但难度不大.