(x-1)/1-(x+1)/1-(x^2+1)/2-(x^4+1)/4-(x^8+1)/8
1个回答

(x-1)/1-(x+1)/1-(x^2+1)/2-(x^4+1)/4-(x^8+1)/8

应该是:1/(x-1)-1/(x+1)-2/(x^2+1)-4/(x^4+1)-8/(x^8+1)(分数先写分子后写分母)

1/(x-1)-1/(x+1)-2/(x^2+1)-4/(x^4+1)-8/(x^8+1)

=(x+1-x+1)/(x^2-1)-2/(x^2+1)-4/(x^4+1)-8/(x^8+1)

=2(x^2+1-x^2+1)/(x^4-1)-4/(x^4+1)-8/(x^8+1)

=4(x^8+1-x^8+1)/(x^8-1)-8/(x^8+1)

=8(x^8+1-x^8+1))/(x^16-1)

=16/(x^16-1)