Differentiate y=sqrt(x+sqrt(x+(sqrt(x))) 求方程y=根号下x+根号x+根号x的导
1个回答

dy={1/[2sqrt(x+sqrt(x+(sqrt(x)))]} d[x+sqrt(x+(sqrt(x)))]

={1/[2sqrt(x+sqrt(x+(sqrt(x)))]} {dx+1/[2sqrt(x)+(sqrt(x))]d[x+(sqrt(x))]}

={1/[2sqrt(x+sqrt(x+(sqrt(x)))]} {dx+1/[2sqrt(x)+(sqrt(x))][dx+1/(2sqrt(x))dx]}

={1/[2sqrt(x+sqrt(x+(sqrt(x)))]} {1+1/[2sqrt(x)+(sqrt(x))][1+1/(2sqrt(x))]}dx

Differentiate y={1/[2sqrt(x+sqrt(x+(sqrt(x)))]} {1+1/[2sqrt(x)+(sqrt(x))][1+1/(2sqrt(x))]}