dy={1/[2sqrt(x+sqrt(x+(sqrt(x)))]} d[x+sqrt(x+(sqrt(x)))]
={1/[2sqrt(x+sqrt(x+(sqrt(x)))]} {dx+1/[2sqrt(x)+(sqrt(x))]d[x+(sqrt(x))]}
={1/[2sqrt(x+sqrt(x+(sqrt(x)))]} {dx+1/[2sqrt(x)+(sqrt(x))][dx+1/(2sqrt(x))dx]}
={1/[2sqrt(x+sqrt(x+(sqrt(x)))]} {1+1/[2sqrt(x)+(sqrt(x))][1+1/(2sqrt(x))]}dx
即
Differentiate y={1/[2sqrt(x+sqrt(x+(sqrt(x)))]} {1+1/[2sqrt(x)+(sqrt(x))][1+1/(2sqrt(x))]}