椭圆参数方程题目4x^2+y^2=4 过m(0,1)直线L交椭圆于A B,P满足op向量=二分之一的(oa向量+ob向量
1个回答

P满足op向量=二分之一的(oa向量+ob向量),

P为AB中点,设坐标为(a,b)

设L方程为:y=kx+1

则交点坐标满足:

4x^2+(kx+1)^2=4

(4+k^2)x^2+2kx-3=0

(x1+x2)/2=-k/(4+k^2)

即:a=-k/(4+k^2)

设A(x1,y1),B(x2,y2),则:

4x1^2+y1^2=4x2^2+y2^2

4(x1-x2)(x1+x2)=-(y1-y2)(y1+y2)

4(x1+x2)/2=-(y1-y2)/(x1-x2)*(y1+y2)/2

4a=-kb

-k=4a/b

所以,a=(4a/b)/(4+16a^2/b^2)

1+4a^2/b^2=1/b

b^2-b+4a^2=0

所以,

P的轨迹:y^2-y+4x^2=0