3道微积分的题目,麻烦高手赐教⑴ 2∫(下限是0,上限是正无穷大)*2x*e的(-2x)次方dx+3∫(下限是0,上限是
2个回答

(1)2∫(0,∞)2x*e^(-2x)dx+3∫(0,∞)3x*e^(-3x)dx

首先求不定积分2∫2x*e^(-2x)dx+3∫3x*e^(-3x)dx

由分部积分法容易求得

2∫2x*e^(-2x)dx+3∫3x*e^(-3x)dx

=-(2x*e^(-2x)+3x*e^(-3x)+e^(-2x)+e^(-3x))+C

2∫(0,∞)2x*e^(-2x)dx+3∫(0,∞)3x*e^(-3x)dx

=lim(b--∞)[-(2b*e^(-2b)+3b*e^(-3b)+e^(-2b)+e^(-3b))+2]

=2

(2)∫(0,2)dx∫(0,2)(1/8)*xy*(x+y)dy

(i)∫(0,2)(1/8)*xy*(x+y)dy

=(1/8)*∫(0,2)(x^2*y+x*y^2)dy

=(1/8)*[∫(0,2)x^2*ydy+∫(0,2)x*y^2dy]

=(1/4)x^2+(1/3)x

(ii)∫(0,2)[(1/4)x^2+(1/3)x]dx

=(1/4)∫(0,2)x^2dx+(1/3)∫(0,2)xdx

=4/3

(iii)

∫(0,2)dx∫(0,2)(1/8)*xy*(x+y)dy=4/3

(3)∫(0,∞)(∫(0,∞)xye^(-x-y)dy)dx

(i)

∫xye^(-x-y)dy

=-∫xye^(-x-y)d(-x-y)

=-xe^(-x-y)(y+1)+C

∫(0,∞)xye^(-x-y)dy

=lim(b--∞)[-xe^(-x-b)(b+1)+xe^(-x)]

=xe^(-x)

(ii)

∫xe^(-x)dx

=-∫x^e(-x)d(-x)

=-∫xde^(-x)

=-e^(-x)(x+1)+C

∫(0,∞)xe^(-x)dx

=lim(b--∞)[-e^(-b)(b+1)+1]

=1

(iii)

∫(0,∞)(∫(0,∞)xye^(-x-y)dy)dx=1