(2014•攀枝花二模)下列离子方程式中,正确的是(  )
1个回答

(1)证明:由已知,4Sn=

a2n+2an,且an>0.

当n=1时,4a1=

a21+2a1,解得a1=2.

当n≥2时,有4Sn−1=

a2n−1+2an−1.

于是4Sn−4Sn−1=

a2n−

a2n−1+2an−2an−1,即4an=

a2n−

a2n−1+2an−2an−1.

于是

a2n−

a2n−1=2an+2an−1,即(an+an-1)(an-an-1)=2(an+an-1).

∵an+an-1>0,

∴an-an-1=2(n≥2).

故数列{an}是首项为2,公差为2的等差数列,且an=2n;

(2)证明:∵an=2n,则[1

Sn=

1

n(n+1)=

1/n−

1

n+1],

∴[1

S1+

1

S2+…+

1

Sn=(1−

1/2)+(

1

2−

1

3)+…+(

1

n−

1

n+1)=1−

1

n+1<1.

∵1−

1

n+1]随着n的增大而增大,

∴当n=1时取最小值[1/2].

故原不等式成立;

(3)由