直线方程题目设三条直线l1:x-2y=1.l2:2x+ky=3.l3:3kx+4y=5.且l1,l2,l3三条直线围成一
1个回答

三条直线有三个不同的交点,即两两之间都是相交的关系,没有平行

所以直线对应向量两两不成比例

即直线对应的向量(2,1) (k,-2) (4,-3k)

两两成比例时,有

k/2=-2/1 k=-4

4/2=-3k/1 k=-2/3

4/k=-3k/(-2) k=±2根号6/3 只要k不等于这些值,直线两两之间必有交点

排除三线共点的情况,即存在非0实数A B使,Al1+Bl2=l3,有系数和常数项对应相等

A+2B=3k

-2A+kB=4

A+3B=5

解得 B=5-3k=(9+3k)/(5+k) 当k=-5时,A B无解,三线不共点

3k^2+13k-16=0 k=1 或 -16/3 此时三线共点

所以当k∉{-4,-2/3,2/3*根号6,-2/3*根号6,1,-16/3},且k∈R时,l1 l2 l3围成三角形