如图(1)所示,水平放置的线圈匝数n=200匝,直径d1=40cm,电阻r=2Ω,线圈与阻值R=6Ω的电阻相连.在线圈的
1个回答

解题思路:(1)根据楞次定律判断出通过电阻R的电流方向;(2)根据法拉第电磁感应定律求出感应电动势的大小,结合闭合电路欧姆定律求出电压表的示数.(3)根据法拉第电磁感应定律求出平均感应电动势,从而得出平均感应电流,结合q=.It求出通过电阻R的电荷量.

(1)穿过线圈的磁场方向向里,在增大,根据楞次定律判断出电流方向从A流向B.

(2)根据法拉第电磁感应定律得:

E=n[△B•S/△t]=n[△B/△t]•π(

d2

2)2=200×[0.3−0.1/0.2]×π×0.12V=2πV.

则感应电流为:I=[E/R+r]=[2π/6+2]=[π/4]A.

则电压表的示数为:U=IR=[3π/2]V.

(3)根据法拉第电磁感应定律得,平均感应电动势为:

.

E=n[△∅/△t].

则平均感应电流为:

.

I=

.

E

R+r.

通过电阻R的电量为:q=

.

I△t=n[△∅/R+r].

将线圈拉出磁场,磁通量的变化量为定量,则通过电阻R的电荷量为定值.

代入数据得:q=200×

0.5×π×(

0.4

2)2

6+2C=[π/2]C.

答:(1)电流方向从A流向B;

(2)电压表的示数为[3π/2]V.

(3)通过电阻R上的电荷量为定值,大小为[π/2]C.

点评:

本题考点: 法拉第电磁感应定律;楞次定律.

考点点评: 解决本题的关键掌握法拉第电磁感应定律,知道电荷量q=n△∅R+r,注意该公式在计算题中不能直接运用,需要推导.