设P0(x0,y0),P1(x1,y1)
则直线P0P1的两点式方程为:(y-y0)/(x-x0)=(y1-y0)/(x1-x0)
当y=0时,-y0/(x-x0)=(y1-y0)/(x1-x0),解得x=x0-y0(x1-x0)/(y1-y0)
当x=0时,(y-y0)/(-x0)=(y1-y0)/(x1-x0),解得y=y0-(y1-y0)/[x0(x1-x0)]
所以直线P0P1与坐标轴的交点坐标为( x0-y0(x1-x0)/(y1-y0),0 )与( 0,y0-(y1-y0)/[x0(x1-x0)] )