由于对称性,知道质心的y0=z0=0
设质心M(x0,0,0)
x0=∫∫∫xdV / ∫∫∫dV
=∫∫∫rsinφcosθ r^2sinφdrdθdφ /[(1/2)(4πb^3-4πa^3)/3]
=∫(-π/2->π/2)dθ∫(0->π)dφ∫(a->b)[r^3(sinφ)^2cosθ]drdθdφ / [2(πb^3-πa^3)/3]
=[π(b^4-a^4)/4] / [2(πb^3-πa^3)/3]
=3(b^4-a^4)/[8(b^3-a^3)]
所以质心M(3(b^4-a^4)/[8(b^3-a^3)],0,0)