利用公式:tan^2+1=1/cos^2,(1/tan^2)+1=1/sin^2
(cosα)^2+1=(tanβ)^2+1=1/(cosβ)^2=1/(tanγ)^2
=[1/(sinγ)^2]-1=(cosγ)^2/(sinγ)^2
=(cosγ)^2/[1-(cosγ)^2]=(tanα)^2/[1-(tanα)^2]
=(sinα)^2/[(cosα)^2-(sinα)^2]
设x=(sinα)^2,则(cosα)^2=1-x
所以可得:
2-x=x/(1-2x),即x^2-3x+1=0
所以解得:x=(3±√5)/2
因为x=(sinα)^2≤1,所以x=(3-√5)/2
所以
sinα=√[(3-√5)/2]