已知A(8,0),B、C两点分别在y轴和x轴上运动,并且满足向量AB.向量BP=0,向量BC=向量CP;
2个回答

1.设B(0,b),C(c,0),P(x,y),则

向量AB=(-8,b),BP=(x,y-b),

∴向量AB*BP=-8x+b(y-b)=0,①

向量BC=CP得(c,-b)=(x-c,y),

∴b=-y,

代入①,化简得y^2=4x,为所求.

2.设L:x=my+8,②代入上式,整理得

y^2-4my-32=0,

设M(x1,y1),N(x2,y2),则

y1+y2=4m,y1y2=-32.

由②,x1+x2=m(y1+y2)+16=4m^2+16,

x1x2=(my1+8)(my2+8)=m^2*y1y2+8m(y1+y2)+64=64.

∴向量QM*向量QN=(x1+1)(x2+1)+y1y2

=x1x2+(x1+x2)+1+y1y2

=64+4m^2+16+1-32

=4m^2+49=97,

解得m=土2√3,

∴L:x土2y√3-8=0.