24:
观察ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5和所要求的式子,看到,ab+bc+ac/abc比较容易求.
分别把ab/a+b=1/3,bc/b+c=1/4,ca/c+a=1/5取倒数相加:
有(a+b)/ab=3;(b+c)/bc=4;(a+c)/ac=5;
三个式子相加得:
(ab+bc+ac)/abc=(3+4+5)/2=6;
取倒数即为结果,所以所求结果为1/6.
25:(1)
1/(x+10)+1/(x+1)(x+2)+1/(x+2)(x+3)+……+1/(x+9)(x+10)=2
1/(x+10)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+……+1/(x+9)-1/(x+10)=2
1/(x+1)=2
2(x+1)=1
2x=-1
x=-1/2
(2):x=0
26:xy+2z=xy+4-2x-2y=(x-2)(y-2).
yz+2x=(y-2)(z-2),zx+2y=(z-2)(x-2).
4=(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)=16+2(xy+yz+zx),
xy+yz+zx=-6.
(x-2)(y-2)(z-2)=xyz-2(xy+yz+zx)+4(x+y+z)-8=13.
原式=[(x-2)+(y-2)+(z-2)]/(x-2)(y-2)(z-2)
=-4/13.