请大家帮我找一个数列或者函数图像的一题多解的数学题
2个回答

已知Sn是等比数列前n项和,S3、S6、S9成等差数列,求证a2 a5 a8为等差数列.三种解法.

证明一

因为S3.S9.S6成等差数列

2S9=S3+S6

2a1(1-q^8)/(1-q)=a1(1-q^2)/(1-q)+a1(1-q^5)/(1-q)

2(1-q^8)=2-q^2-q^5

2q^8=q^2+q^5

2q^7=q+q^4

2a1q^7=a1q+a1q^4

2a8=a2+a5

所以a2.a8.a5成等差数列

证明二:

等比数列{an},各项均不能为0

2S9=S3+S6

(a4+a5+a6+a7+a8+a9)+(a7+a8+a9)=0

(a4+a5+a6)=-2(a7+a8+a9)

(1+q+q^2)=-2(q^3+q^4+q^5)

1=-2q^3

q^3=-1/2

2a8-(a2+a5)=a2*(q^6-1-q^3)=a2*0=0

所以2a8=a2+a5

即a2,a8,a5成等差数列

证明三

证明:由已知设An=A1q^(n-1),q为公比且不为0.

则q不为0也不为1时,Sn=[(q^n-1)/(q-1)]A1;

当q=1时,Sn=nA1;

∵2S9=S3+S6,

∴2[(q^9-1)/(q-1)]A1=[(q^3-1)/(q-1)]A1+[(q^6-1)/(q-1)]A1,

∴2q^9=q3+q^6,∴q3(2q3+1)(q3-1)=0,

∴q3=1或-1/2,∴q=1或(-1/2)^(1/3),

当q=1时,An=A1,则2A8-(A8+A5)=2A1-(A1+A1)=0,得证;

当q=(-1/2)^(1/3)时,An=A1[(-1/2)^(1/3)]^(n-1);

2A8-(A8+A5)

=2×A1[(-1/2)^(1/3)]^(8-1)

-{[A1[(-1/2)^(1/3)]^(2-1)]+[A1[(-1/2)^(1/3)]^(5-1)]}

=(A1/2)(-1/2)^(1/3)-[A1(-1/2)^(1/3)+(-A1/2)(-1/2)^(1/3)]

=(A1/2)(-1/2)^(1/3)-(A1/2)(-1/2)^(1/3)

=0,得证.