如图,把一张长方形纸片ABCD折叠,使点C与点A重合,折痕为EF.如∠DEF=123°,那么∠BAF=______°.
3个回答

解题思路:根据翻折不变性,证出△AGE≌△ABF,然后求出∠GEA的度数即为∠BAF的度数.

∵∠DEF=123°,

∴∠GEF=123°,

∠AEF=180°-123°=57°,

∠GEA=123°-57°=66°.

又∵∠G=∠B,

AG=AB,

∠GAE=∠BAF=90°-∠EAF,

∴△AGE≌△ABF,

∴∠BFA=∠GEA=66°,

∴∠BAF=90°-66°=24°.

故答案为24°.

点评:

本题考点: 翻折变换(折叠问题).

考点点评: 此题考查了翻折不变性,由于翻折,会产生全等三角形、直角三角形等图形,利用这些图形的性质是解答此类题目的关键.