解题思路:据题意设出函数关系式,把x=3时y=22,当x=-2时,y=17.代入y与x间的函数关系式便可求出未知数的值,从而求出其解析式.
设y1=k1(2x-1),y2=k2x2,
∵y=y1+y2,
∴y=k1(2x-1)+k2x2
把x=3,y=22;x=-2,y=17代入,
5k1+9k2=22
−5k1+4k2=17,
解得
k1=−1
k2=3.
∴y=3x2-2x+1.
点评:
本题考点: 等量关系与方程;辨识成正比例的量与成反比例的量.
考点点评: 本题主要考查了等量关系与方程.确定函数解析式的关键是正确理解图象上的点与函数解析式的关系.