函数f(x)=x2+lnx-4的零点所在的区间是(  )
1个回答

解题思路:根据连续函数f(x)=x2+lnx-4,满足f(1)<0,f(2)>0,可得函数f(x)=x2+lnx-4的零点所在的区间.

∵连续函数f(x)=x2+lnx-4,f(1)=-3<0,f(2)=ln2>0,

∴函数f(x)=x2+lnx-4的零点所在的区间是 (1,2).

故选B.

点评:

本题考点: 函数零点的判定定理.

考点点评: 本题主要考查函数的零点的定义,判断函数的零点所在的区间的方法,属于基础题.