已知△ABC中,M是BC中点,AE是角BAC的平分线,过B作BD垂直AE,垂足为D,交AC于B’,AM与BD相交于F,求
1个回答

因为,∠ABD = 90°-∠DAB = 90°-∠DAB' = ∠AB'D ,

所以,AB = AB' ,

连接EB',

在等腰△ABB'中,顶角平分线AD是底边BB'的垂直平分线,即有:EB = EB' ,

可得:∠EBB' = ∠EB'B ;

在等腰△EBB'中,底边BB'上的高平分顶角∠BEB' ,即有:∠BED = ∠B'ED ;

连接DM,

因为,BD = B'D ,BM = CM ,

所以,DM是△BB'C的中位线,

可得:DM∥AC ,B'C = 2DM ,

则有:AC = AB'+B'C = AB'+2DM ;

已知,AE是∠BAC的平分线,可得:AB/AC = BE/CE ;

BF = BD+DF = B'D+DF = B'F+DF+DF = B'F+2DF ;

CE = CM+ME = BM+ME = BE+ME+ME = BM+2ME ;

因为,DM∥AC ,

所以,B'F/DF = AB'/DM ,

可得:B'F/(B'F+2DF) = AB'/(AB'+2DM) ,

则有:B'F/BF = AB'/AC = AB/AC = BE/CE ,

可得:B‘F/(B'F+BF) = BE/(BE+CE) ,

则有:B'F/BB' = BE/BC = B'E/BC ,

即有:B'F/B'E = BB'/BC ;

因为,在△B'EF和△BCB'中,∠EB'F = ∠CBB' , B'F/B'E = BB'/BC ,

所以,△B'EF ∽ △BCB' ,

可得:∠B'EF = ∠BCB' ;

因为,∠AEF = ∠AEB'-∠B'EF = ∠AEB-∠BCB' = ∠EAC = ∠EAB ,

所以,EF∥AB .