求证:a^5+b^5>a^2b^3+a^3b^2
收藏:
0
点赞数:
0
评论数:
0
1个回答

a^5-a^2b^3+b^5-b^2a^3=a^2(a^3-b^3)+b^2(b^3-a^3)

=(a^2-b^2)*(a^3-b^3)

因为这2个式子符号相同 所以上式大于0

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识