1°当(x,y)→(0,0)时
|sin[1/(x²+y²)]|≤1
x+y→0
即
sin[1/(x²+y²)]和 x+y分别为(x,y)→(0,0)时的有界量和无穷小量
故
lim[(x,y)→(0,0)]{(x+y)sin[1/(x²+y²)]}=0
2°当(x,y)→(∞,∞)时
|(x+y)sin[1/(x²+y²)]|
≤ (|x|+|y|)[1/(x²+y²)]
=(|x|+|y|)/(x²+y²)
→0
故
lim[(x,y)→(∞,∞)]{(x+y)sin[1/(x²+y²)]}=0