在某次数学竞赛中共有甲、乙、丙三题,共25人参加竞赛,每个同学至少选作一题.在所有没解出甲题的同学中,解出乙题的人数是解
5个回答

解题思路:设解出甲、乙、丙三题的学生的集合分别为A、B、C,并用三个圆表示之,则重叠部分表示同时解出两题或三题的学生的集合,其人数分别以a,b,c,d,e,f,g表示,再根据原题中的条件列出方程,化简方程,确定所求解的未知数的范围,再结合元素的个数为正整数这一特点,即可求解.

设解出甲、乙、丙三题的学生的集合分别为A、B、C,并用三个圆表示之,则重叠部分表示同时解出两题或三题的学生的集合,其人数分别以a,b,c,d,e,f,g表示.由于每个学生至少解出一题,故a+b+c+d+e+f+g=25①由于没...

点评:

本题考点: Venn图表达集合的关系及运算.

考点点评: 本题考查集合的表示方法:Venn图,以及集合运算和集合元素个数的关系和确定方法,要注意方程的变形和未知数范围的确定,是一道基础题.

相关问题