离散随机变量里 的方差 二项分布 公式 为什么我的推导错误 高中 初中 求解
收藏:
0
点赞数:
0
评论数:
0
2个回答

Dξ=∑(ξ-Eξ)^2*Pξ

=∑(ξ^2+Eξ^2-2*ξ*Eξ)*Pξ

=∑(ξ^2*Pξ+Eξ^2*Pξ-2*Pξ*ξ*Eξ)

=∑ξ^2*Pξ+Eξ^2*∑Pξ-2*Eξ*∑Pξ*ξ

因为∑Pξ=1而且Eξ=∑ξ*Pξ

所以Dξ=∑ξ^2*Pξ-Eξ^2

而∑ξ^2*Pξ,表示E(ξ^2)

所以Dξ =E(ξ^2)-Eξ^2

下面计算几何分布的学期望,

Eξ=∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*p

Eξ=p+∑{ξ=2,∞}ξ*(1-p)^(ξ-1)*p ①

当然

(1-p)*Eξ=∑{ξ=1,∞}ξ*(1-p)^ξ*p

(1-p)*Eξ=∑{ξ=2,∞}(ξ-1)*(1-p)^(ξ-1)*p ②

①-②得

p*Eξ=p+∑{ξ=2,∞}(1-p)^(ξ-1)*p

所以

Eξ=1+∑{ξ=2,∞}(1-p)^(ξ-1)

=∑{ξ=1,∞}(1-p)^(ξ-1)

=lim{x→∞}[1-(1-p)^x]/p

=1/p

若要计算方差,可以根据公式Dξ =E(ξ^2)-Eξ^2计算,

其中E(ξ^2)的计算过程如下:

E(ξ^2)=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*p

E(ξ^2)-Eξ=∑{ξ=1,∞}ξ^2*(1-p)^(ξ-1)*p -∑{ξ=1,∞}ξ*(1-p)^(ξ-1)*p

E(ξ^2)-Eξ=∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p

E(ξ^2)=1/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p ①

(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=1,∞}ξ*(ξ-1)*(1-p)^ξ*p

(1-p)*E(ξ^2)=(1-p)/p+∑{ξ=2,∞}(ξ-1)*(ξ-2)*(1-p)^(ξ-1)*p ②

由①得

E(ξ^2)=1/p+∑{ξ=2,∞}ξ*(ξ-1)*(1-p)^(ξ-1)*p ③

③-②得

p*E(ξ^2)=1+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1)*p

E(ξ^2)=1/p+∑{ξ=2,∞}2*(ξ-1)*(1-p)^(ξ-1) ④

(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=2,∞}(ξ-1)*(1-p)^ξ

(1-p)*E(ξ^2)=(1-p)/p+2*∑{ξ=3,∞}(ξ-2)*(1-p)^(ξ-1) ⑤

由④得

E(ξ^2)=1/p+2*(1-p)+2*∑{ξ=3,∞}(ξ-1)*(1-p)^(ξ-1) ⑥

⑥-⑤得.

p*E(ξ^2)=1+2*(1-p)+2*∑{ξ=3,∞}(1-p)^(ξ-1).

p*E(ξ^2)=1+2*(1-p)+2*lim{x→∞}(1-p)^2*[1-(1-p)^x]/p.

p*E(ξ^2)=1+2*(1-p)+2*(1-p)^2/p.

E(ξ^2)=1/p+2*(1-p)/p+2*(1-p)^2/p/p

=1/p+2*(1-p)/p/p

=(2-p)/p/p

若求方差,根据公式Dξ =E(ξ^2)-Eξ^2得,.

Dξ =(2-p)/p/p-1/p/p

=(1-p)/p^2

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识