法向量的定义及应用(有例题及解答)
1个回答

概念  从理论上说,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息.一般不选择零向量为平面的法向量.  如果已知直线与平面垂直,可以取已知直线的两点构成的向量作为法向量;如果不存在这样的直线,可用设元法求一个平面的法向量;步骤如下:首先设平面的法向量m(x,y,z),然后寻找平面内任意两个不平行的向量AB(x1,y1,z1)和CD(x2,y2,z2).由于平面法向量垂直于平面内所有的向量,因此得到x*x1+y*y1+z*z1=0和x*x2+y*y2+z*z2=0.由于上面解法存在三个未知数两个方程(不能通过增加新的向量和方程求解,因为其它方程和上述两个方程是等价的),无法得到唯一的法向量(因为法向量不是唯一的).为了得到确定法向量,可采用固定z=1(也可以固定x=1或y=1)或者模等于1的方法(单位法向量),但是这步并不是必须的.因为确定法向量和不确定法向量的作用是一样的.

应用范围  法向量的主要应用如下:  1、求斜线与平面所成的角:求出平面法向量和斜线的夹角,这个角与为锐角时与线面夹角互余,当这个角是钝角时线面夹角等于这个角减去90度.利用这个原理也可以证明线面平行;   2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补;   3、点到面的距离:任一斜线(平面为一点与平面内的连线)在法向量方向的射影;如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量).利用这个原理也可以求异面直线的距离   法向量方法是高考数学可以采用的方法之一,他的优点在于思路简单,容易操作.只要能够建立出直角坐标系,都可以写出最后答案.缺点在于同一般立体几何方法相比,其计算量巨大,特别是在计算二面角的时候.  平面法向量的求法:  (一般用待定系数法)   步骤:1、建立恰当的直角坐标系   2、设平面法向量n=(x,y,z)   3、在平面内找出两个不共线的向量,记为a=(a1,a2,a3) b=(b1,b2,b3)   4、根据法向量的定义建立方程组①n*a=0 ②n*b=0   5、解方程组,取其中一组即可.