一道线性映射问题已知 T:W -> X, H:W->Y 均为线性映射,并且有Ker(T) 包含于Ker(H), 求证存在
1个回答

对任意x ∈ im(T),存在w ∈ W使得x = Tw.

任取一个满足上述条件的w,令S(x) = Hw即可.

首先说明该映射S是良定义的,即与w的选取无关:

设w,w' ∈ im(T)使Tw = x = Tw',则T(w-w') = 0,即有w-w' ∈ ker(T).

而ker(T) ⊆ ker(H),故H(w-w') = 0,也即Hw = Hw'.

其次说明S是线性的:

对任意x,x' ∈ im(T),k,k' ∈ 数域.

设w,w' ∈ im(T)使x = Tw,x' = Tw',则有kx+k'x' = T(kw+k'w').

于是由S的定义有S(kx+k'x') = H(kw+k'w') = kHw+k'Hw' = kS(x)+k'S(x').

最后验证S◦T = H:

因为对任意w ∈ W,由S的定义有S(Tw) = Hw,也即S◦T(w) = H(w).