已知数列an为等差数列,数列bn为等比数列,且a1b1+a2b2+...+anbn=n乘以2的n加3次方,且a1=8
1个回答

a(n) = 8 + (n-1)d.

a(1)b(1) = 8b(1) = 1*2^(1+3) = 16,b(1) = 2.

b(n) = 2q^(n-1).

a(1)b(1)+a(2)b(2)+...+a(n)b(n) = n*2^(n+3),

a(1)b(1)+a(2)b(2)+...+a(n)b(n)+a(n+1)b(n+1) = (n+1)*2^(n+4),

a(n+1)b(n+1) = (n+1)2^(n+4) - n*2^(n+3) = (2n+2-n)2^(n+3) = (n+2)2^(n+3).

a(n)b(n) = (n+1)2^(n+2).

(n+1)2^(n+2) = [8+(n-1)d]*2q^(n-1),

(n+1)2^(n+1) = [8+(n-1)d]q^(n-1).

n=2时,3*2^3 = [8 + d]q,24 = (8+d)q.

d不为-8.

q = 24/(8+d).

n=3时,4*2^4 = [8+2d]*q^2,

32 = (4+d)q^2 = (4+d)*[24/(8+d)]^2,

32(8+d)^2 = 16*36(4+d),

(8+d)^2 = 18(4+d),

0 = d^2 + 16d + 64 - 18d - 72 = d^2 - 2d - 8 = (d-4)(d+2),

d=4时,q = 24/(8+d) = 2.

a(n) = 8 + 4(n-1) = 4n+4.

b(n) = 2q^(n-1) = 2^n.

a(n)b(n) = 4(n+1)2^n = (n+1)2^(n+2),满足题意.

d=-2时,q=24/(8+d) = 4.

a(n) = 8 - 2(n-1)= 10 - 2n.

b(n) = 2q^(n-1) = 2*4^(n-1) = 2^(2n-1).

a(n)b(n) = (10-2n)2^(2n-1)与a(n)b(n)=(n+1)2^(n+2)矛盾.

因此,只有,

a(n) = 4n+4,

b(n) = 2^n.

第2部分,题意不清.