f(x)=sin(x+π/3)+sin(x-π/3)+√3cosx+1.三角形ABC中,若f(B+π/2)=1.b=1.
1个回答

f(B+π/2)=1

sin(B+π/2+π/3)+sin(B+π/2-π/3)+√3cos(B+π/2)+1=1

所以

sin(B+5π/6) +sin(B+π/6) -√3sinB=0

展开得到

sinB*cos(5π/6) +cosB*sin(5π/6)+sinB*cos(π/6) +cosB*sin(π/6) -√3sinB=0

显然sin(5π/6)=sin(π/6)=1/2,cos(5π/6)= -cos(π/6)

那么

cosB-√3sinB=0

即tanB=√3 /3

所以B=30度

再由正弦定理,

b/sinB=c/sinC

故1/(1/2)= √3 /sinC,得到sinC=√3/2,所以C=60或120度,

若C为60度,则A为90度,a=√(b^2+c^2)=2,

若C为120度,则A为30度,a=b=1