三角函数的值域求y=(sinx*cosx)/(1+sinx+cosx)的定义域和值域
1个回答

y=(sinx*cosx)/(1+sinx+cosx)的定义域和值域

y = ½ (sin2x)[1-(sinx+cosx)]/{[1+sinx+cosx][1-(sinx+cosx)]}

= ½ (sin2x)[1-(sinx+cosx)]/[1-(sinx+cosx)²]

= ½ (sin2x)[1-(sinx+cosx)]/(-sin2x)

= -[1-(sinx+cosx)]/2

= -1/2 +(sinx+cosx)/2

= -1/2 +[sinx+sin(π/2 - x)]/2

= -1/2 +sin(π/4)cos(π/4 - x)

= -1/2 +[√2)/2]cos(π/4 - x)

-1/2 -√2)/2 ≤ y ≤ -1/2 +√2)/2

-1/2 -√2)/2 ≤ y ≤ -1/2 +√2)/2

所以:

定义域:x ∈R

值 域:-1/2 -√2)/2 ≤ y ≤ -1/2 +√2)/2