(a²+b²)sin(A-B)=(a²-b²)sinC 求三角形abc的形状
4个回答

(a^2+b^2)sin(A-B)=(a^2-b^2)sinC

∵sinC = sin{180°-(A+B)} = sin(A+B)

∴(a^2+b^2)sin(A-B)=(a^2-b^2)sin(A+B)

a^2sin(A-B) + b^2sin(A-B) = a^2sin(A+B) - b^2sin(A+B)

a^2 { sin(A+B)-sin(A-B) } = b^2 { sin(A+B) + sin(A-B) }

a^2 * 2 cos { [(A+B)+(A-B)]/2 } sin { [(A+B)-(A-B)]/2 } = b^2 * 2 sin{ [(A+B)+(A-B)]/2 } cos { [(A+B)-(A-B)]/2 }

a^2 * 2 cosA sinB = b^2 * 2 sinA cosB

a^2/b^2 = sinA cosB/(cosA sinB)

(sinA/sinB)^2 = sinA cosB/(cosA sinB)

∵sinA≠0,sinB≠0,∴两边同乘以sinB/sinA

sinA/sinB = cosB/cosA

sinAcosA=sinBcosB

1/2sin(2A)=1/2(sin2B)

sin2A=sin2B

0<2A,2B<180°

∴2A=2B,或者2A+2B=180°

∴A=B,或A+B=90°

等腰三角形,或直角三角形