(sina)^2+(cos(a+30))^2+sinacos(a+30)=3/4
证明:(sina)^2+(cos(a+30))^2+sinacos(a+30)
=(1-cos2a)/2+(1+cos(2a+60))/2+sina(cosacos30-sinasin30)
=1-(1/2)(1-2(sina)^2)+(1/2)(cos2acos60-sin2asin60)+(√3/2)sinacosa
-(1/2)(sina)^2
=1-(1/2)(1-2(sina)^2)+(1/4)(1-2(sina)^2)-(√3/4)sin2a+(√3/4)sin2a
-(1/2)(sina)^2
=1-1/2+1/4=3/4