解题思路:本题可运用平均数公式求出平均数,再运用方差的公式列出方差表达式,再讨论样本数据中的最大值的情况,即可解决问题.
设样本数据为:x1,x2,x3,x4,x5,
平均数=(x1+x2+x3+x4+x5)÷5=7;
方差s2=[(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2]÷5=4.
从而有x1+x2+x3+x4+x5=35,①
(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2=20.②
若样本数据中的最大值为11,不妨设x5=11,则②式变为:
(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2=4,由于样本数据互不相同,这是不可能成立的;
若样本数据为4,6,7,8,10,代入验证知①②式均成立,此时样本数据中的最大值为 10.
故答案为:10.
点评:
本题考点: 总体分布的估计;极差、方差与标准差.
考点点评: 本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.