已知函数f(x)=x2-2ax+5.(a>1)
1个回答

解题思路:(1)确定函数的对称轴,从而可得函数的单调性,利用f(x)的定义域和值域均是[1,a],建立方程,即可求实数a的值.

(2)可以根据函数f(x)=x2-2ax+5=(x-a)2+5-a2.开口向上,对称轴为x=a,可以推出a的范围,利用函数的图象求出[1,a+1]上的最值问题,对任意的x∈[1,a+1],总有-4≤f(x)≤4,从而求出实数a的取值范围.

(1)∵函数f(x)=x2-2ax+5(a>1),∴f(x)开口向上,对称轴为x=a>1,…(2分)

∴f(x)在[1,a]是单调减函数,…(6分)

∴f(x)的最大值为f(1)=6-2a;f(x)的最小值为f(a)=5-a2…(10分)

∴6-2a=a,且5-a2=1

∴a=2…(14分)

(2)函数f(x)=x2-2ax+5=(x-a)2+5-a2.开口向上,对称轴为x=a,

∵f(x)在区间(-∞,2]上是减函数,对称轴大于等于2,

∴a≥2,a+1>3,

f(x)在(1,a)上为减函数,在(a,a+1)上为增函数,

f(x)在x=a处取得最小值,f(x)min=f(a)=5-a2

f(x)在x=1处取得最大值,f(x)max=f(1)=6-2a,

∴5-a2≤f(x)≤6-2a,

∵对任意的x∈[1,a+1],总有-4≤f(x)≤4,

6−2a≤4

5−a2≥−4解得1≤a≤3;

综上:2≤a≤3;

点评:

本题考点: 函数恒成立问题;函数的定义域及其求法;函数的值域.

考点点评: 本题考查二次函数的最值问题,考查函数的单调性,确定函数的单调性是关键,此题是一道函数的恒成立问题,第二问难度比较大,充分考查了函数的对称轴和二次函数的图象问题,是一道中档题;