已知sin的平方2a+sin2acosa-cos2a=1,a属于(0,pai/2),(1)求tana的值;(2)求使函数
3个回答

(1) sin的平方2a+sin2acosa-cos2a=1

sin2acosa-cos2a=1-(sin2a)^2=(cos2a)^2

sin2acosa=cos2a(1+cos2a)

2sina(cosa)^2=cos2a*2(cosa)^2

sina=cos2a=1-2(sina)^2

2(sina)^2+sina-1

sina=-1,sina=1/2

∵a∈(0,π/2)

∴sina=1/2,a=π/6

tana=tan(π/6)=√3/3

(2)f(x)=sin的平方(x+a)+sin(a+x)cos(a+x)

=1/2[sin(2x+2a)-cos(2x+2a)+1]

=√2/2[sin(2x+2*π/6)cos(π/4)-cos(2x+2*π/6)sin(π/4)]+1/2

=√2/2sin(2x+2*π/6-π/4)+1/2

=√2/2sin(2x+π/12)+1/2

sin(2x+π/12)=1时,f(x)取得最大值

2x+π/12=2kπ+π/2

x=kπ+5π/24

因此,{x|x=kπ+5π/24}