cos平方15°-sin平方15°等于多少
4个回答

方法一:

(cos^2)15°-(sin^2)15

=(cos15+sin15)(cos15-sin15)

=[sin(90-15)+sin15][sin(90-15)-sin15]

=(sin75+sin15)(sin75-sin15)

=2*sin(75+15)/2*cos(75-15)/2*2*cos(75+15)*sin(75-15)/2

=4*sin45*cos30*cos45*sin30

=√3/2.

方法二:

cos15°=cos(45-30)=cos45*cos30+sin45*sin30

=√2/2*√3/2+√2/2*1/2

=(√6+√2)/4.

cos^2(15)=[(√6+√2)/4]^2=(2+√3)/4,

sin15=sin(45-30)=sin45*cos30-cos45*sin30

=√2/2*√3/2-√2/2*1/2

=(√6-√2)/4.

sin^2(15)=[(√6-√2)/4]^2=(2-√3)/4.

(cos^2)15°-(sin^2)15=(2+√3)/4-(2-√3)/4

=√3/2.