三角函数练习三1.若tanα=3,tanβ=4/3,则tan(α-β)等于多少?2.化简(3/2)cosx-(√3/2)
4个回答

1.若tanα=3,tanβ=4/3,则tan(α-β)等于多少?

tan(α-β)=(tanα-tanβ)/(1-tanαtanβ)=(3-4/3)/(1-4)=-5/9

2.化简(3/2)cosx-(√3/2)sinx

=√3(√3/2*cosx-1/2*sinx)=√3cos(x+π/6)

3.化简2(cos^2)22.5°-1=cos45º=√2/2

多少?

4.已知sin2α=-sinα,α∈(π/2,π)

∵sin2α=2sinαcosα=-sinα==> cosα=-1/2

又α∈(π/2,π)∴α=120αº∴tanα=-√3

5. ∵cosθ=-3/5,θ∈(π/2,π)∴sinθ=4/5

∴sin(θ+[π/3])=sinθcosπ/3+cosθsinπ/3

=4/5*1/2+(-3/5)*√3/2=(4-3√3)/10

6.∵ sinα-cosα=1/5,0≤α≤π,

sin²α+cos²α=1

∴(sinα-1/5)²+sin²α=1 ,sinα>0

sin²α-1/5sinα-12/25=0

sinα=4/5 ,sinα=-3/5(舍)

∴cosα=-3/5

∴sin2α=2sinαcosα=-24/25

cos2α=1-2sin²α=-7/25

∴sin(2α-[π/4])

=sin2αcosπ/4-cos2αsinπ/4

=-24/25*√2/2+7/25*√2/2

=-17√2/50