(1)如图1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)∠BDG=45°
(3)延长AB、FG交于H,连接HD.
易证四边形AHFD为平行四边形
∵∠ABC=120°,AF平分∠BAD
∴∠DAF=30°,∠ADC=120°,∠DFA=30°
∴△DAF为等腰三角形
∴AD=DF
∴平行四边形AHFD为菱形
∴△ADH,△DHF为全等的等边三角形
∴DH=DF∠BHD=∠GFD=60°
∵FG=CE,CE=CF,CF=BH
∴BH=GF
∴△BHD 与△GFD全等
∴∠BDH=∠GDF
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°