如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点
1个回答

(Ⅰ)证明:三棱柱ABC-A1B1C1中,AC∥A1C1,AC=A1C1,连接ED,

可得DE∥AC,DE=[1/2]AC,又F为棱A1C1的中点.∴A1F=DE,A1F∥DE,

所以A1DEF是平行四边形,所以EF∥DA1

DA1⊂平面A1CD,EF⊄平面A1CD,∴EF∥平面A1CD

(Ⅱ)证明:∵D是AB的中点,∴CD⊥AB,

又AA1⊥平面ABC,CD⊂平面ABC,

∴AA1⊥CD,又AA1∩AB=A,

∴CD⊥面A1ABB1,又CD⊂面A1CD,

∴平面A1CD⊥平面A1ABB1

(Ⅲ)连结BC1,A1B,

∵AC∥A1C1,∴∠BC1A1是直线BC1与直线AC所成角,

设棱长为2,由题意知A1C1=2,

A1B=C1B=

4+4−2×2×2×cos120°=2

3,

∴cos∠BC1A1=

4+12−12

2×2×2

3=

3

6.

∴直线BC1与直线AC所成角的余弦值为

3

6.