因式分解及十字相乘法习题及答案
1个回答

x^2+3x-40

=x^2+3x+2.25-42.25

=(x+1.5)^2-(6.5)^2

=(x+8)(x-5).

⑹十字相乘法

这种方法有两种情况.

①x^2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q) .

②kx^2+mx+n型的式子的因式分解

如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).

图示如下:

a b

×

c d

例如:因为

1 -3

×

7 2

-3×7=-21,1×2=2,且2-21=-19,

所以7x^2-19x-6=(7x+2)(x-3).

十字相乘法口诀:首尾分解,交叉相乘,求和凑中

⑶分组分解法

分组分解是解方程的一种简洁的方法,我们来学习这个知识.

能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法.

比如:

ax+ay+bx+by

=a(x+y)+b(x+y)

=(a+b)(x+y)

我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难.

同样,这道题也可以这样做.

ax+ay+bx+by

=x(a+b)+y(a+b)

=(a+b)(x+y)

几道例题:

1.5ax+5bx+3ay+3by

解法:=5x(a+b)+3y(a+b)

=(5x+3y)(a+b)

说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出.

2.x3-x2+x-1

解法:=(x3-x2)+(x-1)

=x2(x-1)+(x-1)

=(x-1)(x2+1)

利用二二分法,提公因式法提出x2,然后相合轻松解决.

3.x2-x-y2-y

解法:=(x2-y2)-(x+y)

=(x+y)(x-y)-(x+y)

=(x+y)(x-y+1)

利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决.

2x^3+6x^2+4x

x^4-6x^2+8

x^4-13x^2+36

(x-2y)^2-2(x-2y)-24

7x^2-2xy-5y^2

2x^3+6x^2+4x=x(2x+2)(x+2)

x^4-6x^2+8 =(x^2-2)(x^2-4)

x^4-13x^2+36 =(x^2-4)(x^2-9)

(x-2y)^2-2(x-2y)-24 = (x-2y+4)(x-2y-6)

7x^2-2xy-5y^2 ==(7x+5y)(x-y)