已知圆O:x^2+y^2=1,O为坐标原点,一条直线l:y=kx+b(b>0)与圆O相切并与椭圆x^2/2+y^2=1交
1个回答

(1)kx-y+b=0

b/√(1+k2)=1

f(k)=√(1+k2)

(2) A(x1,y1) B(x2,y2)

x1x2+y1y2=2/3

把y=kx+b代入x^2/2+y^2=1

(1+2k2)x2+4bkx+2b2-2=0

x1x2=(2b2-2)/(1+2k2)=2k2/(1+2k2)

x1+x2=-4bk/(1+2k2)

y1y2=k^2x1x2+kb(x1+x2)+b2

=2k^4/(1+2k2)-4k2b2/(1+2k2)+b2

所以

2k^4/(1+2k2)-4k2b2/(1+2k2)+b2+2k2/(1+2k2)=2/3

解得k=±1 ,b=√2

所以直线l的方程y=±x+√2

(3)

2k^4/(1+2k2)-4k2b2/(1+2k2)+b2+2k2/(1+2k2)=m

(k2+1)/(2k2+1)=m

2/3≤m≤3/4

2/3≤(k2+1)/(2k2+1)≤3/4

得1/2≤k2≤1

又由(1+2k2)x2+4bkx+2b2-2=0

x1x2=(2b2-2)/(1+2k2)=2k2/(1+2k2)

x1+x2=-4bk/(1+2k2)

得|AB|=2√2√(1+k2)√k2/(1+2k2)

高为1

所以面积S=1/2*2√2√(1+k2)√k2/(1+2k2)

因为1/2≤k2≤1

所以S的范围为