可以确定,不可导.
反证法.以F(x)=f(x)+g(x)为例.
如果可导,由导数定义:lim(x->x0) [F(x)-F(x0)]/(x-x0) 存在.但是,
lim(x->x0) [F(x)-F(x0)]/(x-x0)
=lim(x->x0) [f(x)+g(x)-f(x0)-g(x0)]/(x-x0)
=lim(x->x0) [f(x)-f(x0)]/(x-x0) + lim(x->x0) [g(x)-g(x0)]/(x-x0)
因为 f(x) 在 x0 处可导,而 g(x) 在 x0 处不可导,所以上式中,第一个极限存在而第二个极限不存在,因此 lim(x->x0) [F(x)-F(x0)]/(x-x0) 不存在,这与 F(x) 在 x0 处可导矛盾.因此 F(x) 不可导.