甲、乙两人打乒乓球,谁先胜两局谁赢;如果没有人连胜两局,则谁先胜三局谁赢,打到决出输赢为止.那么一共有多少种可能的情况?
3个回答

解题思路:根据分类计数原理,所有可能情形可分为三类,在每一类中可利用组合数公式计数,最后三类求和即可得结果.

第一类:三局为止,共有2种情形;

第二类:四局为止,共有2×

C 2 3=6种情形;

第三类:五局为止,共有2×

C 2 4=12种情形;

故所有可能出现的情形共有2+6+12=20种情形

答:一共有20种可能的情况.

点评:

本题考点: 排列组合.

考点点评: 本题主要考查了分类和分步计数原理的运用,组合数公式的运用,分类讨论的思想方法.