解题思路:(1)根据轴对称得出直线y=x+b是线段OO′的垂直平分线,推出AO=AO′,BO=BO′,求出AO=AO′=BO=BO′,即可推出答案;
(2)设直线y=x+b与x轴、y轴的交点坐标分别是N(-b,0),P(0,b),得出等腰直角三角形ONP,求出OM⊥NP,求出MP=OM=1,根据勾股定理求出即可.
(1)证明:连接OO′,
∵点O关于直线y=x+b的对称,
∴直线y=x+b是线段OO′的垂直平分线,
∴AO=AO′,BO=BO′,
又∵OA,OB是⊙O的半径,
∴OA=OB,
∴AO=AO′=BO=BO′,
∴四边形OAO′B是菱形.
(2)如图,菱形OAO'B的对角线交点为点M,
当点O′落在圆上时,
∵OM=[1/2]OO′=1,
∵设直线y=x+b与x轴、y轴的交点坐标分别是N(-b,0),P(0,b),
∴△ONP为等腰直角三角形,
∴∠ONP=45°,
∵四边形OAO′B是菱形,
∴OM⊥PN,
∵∠ONP=45°=∠OPN,
∴OM=PM=MN=1,
在Rt△POM中,由勾股定理得:OP=
2,
即b=
2.
点评:
本题考点: 一次函数综合题;勾股定理;等腰直角三角形;菱形的判定.
考点点评: 本题考查了一次函数,等腰直角三角形,勾股定理,菱形的判定等知识点的应用,主要考查学生运用定理进行推理的能力,注意:图形和已知条件的结合,题目比较典型,难度也适中,是一道比较好的题目.