关于二重积分化作累次积分的一个问题
1个回答

这是一个4天后的零回答题.

已知二重积分∫∫(D)x^2dσ,其中 D由y=1-√(1-x^2),x=1以及y=0围成.

(I)请画出D的图形;

(II)在极坐标下将二重积分化为累次积分.

(I)、画D的图形:y=1-√(1-x^2):

x 00.10.20.30.40.50.60.70.80.90.950.981

y 0 0.005 0.202 0.046 0.0835 0.134 0.2 0.286 0.4 0.564 0.688 0.801 1

画图见附图.

(II)、

因为 x=ρconθ,y=ρsinθ,dσ=ρdρdθ,

D:y=1-√(1-x^2),y=0,x=1,

y 从0到y=1-√(1-x^2),x 从0到1,

变到极坐标时,

ρsinθ=1-√[1-ρ^2(conθ)^2],

√[1-ρ^2(conθ)^2]=1-ρsinθ,

1-ρ^2(conθ)^2=[1-ρsinθ]^2=1-2ρsinθ+ρ^2(sinθ)^2,

ρ^2-2ρsinθ=0,

ρ=0 (舍弃),ρ=2sinθ,

x=1 变到极坐标时,x=ρconθ=1,ρ=1/conθ,

极坐标积分,ρ从ρ=2sinθ积到ρ=1/conθ,θ从0到π/4,

所以,二重积分∫∫(D)x^2dσ=∫∫(D)(ρconθ)^2ρdρdθ=

=∫(从0积到π/4)dθ∫(ρ从ρ=2sinθ积到ρ=1/conθ)[ρ^3(conθ)^2]dρ=

=∫(从0积到π/4)dθ(ρ从ρ=2sinθ积到ρ=1/conθ)[ρ^4(conθ)^2/4]=

=∫(从0积到π/4)[1/(conθ)^2-16(sinθ)^4(conθ)^2]/4dθ=

=∫(从0积到π/4){1/[4(conθ)^2]-4(sinθ)^4(conθ)^2}dθ=

=∫(从0积到π/4){1/[4(conθ)^2]-4(sinθ)^4[1-(sinθ)^2]}dθ=

=∫(从0积到π/4){1/[4(conθ)^2]-4(sinθ)^4+4(sinθ)^6}dθ=【以下套积分公式】

=(从0积到π/4){(1/4)[tgθ]-4∫(从0积到π/4)(sinθ)^4dθ+(从0积到π/4)(4{-(sinθ)^5conθ/6}+(5/6)∫(从0积到π/4)(sinθ)^4dθ=

=1/4-4{-(√2/8)(√2/2)/6}-(19/6)∫(从0积到π/4)(sinθ)^4dθ=

=1/4+1/12-(19/6)(从0积到π/4){-(sinθ)^3conθ}-(19/6)(3/4)∫(从0积到π/4)(sinθ)^2dθ=

=1/3-(19/6){-1/4}-(19/8)(从0积到π/4){(1/2)θ-(1/4)sin2θ}=

=1/3+19/24-(19/8){π/8-1/4-0-0}=

=27/24-19π/64+19/32=(216-57π+114)/192=(330-57π)/192.