在平面直角坐标系中,O为原点,二次函数y=-1/4x²+bx+c的图像经过点A(4,0),C(0,2)
3个回答

(1) y = -x²/4 + x/2 + 2 = -(x-1)²/4 + 9/4

(2)

对称轴: x = 1, D(1, 0)

tan∠A = OC/OA = 2/4 = 1/2

tan∠CDE = OD/OC = 1/2

∠A = ∠CDE

tan∠B = OC/BO = 2/2 = 1

∠B = 45°

所以要使两三角形相似,只需∠CED或∠DCE为45°即可

(a) ∠CED = 45°

因为∠B = 45°, ∠BDE = 90°, BC的延长线与对称轴的交点即为E,其横坐标为1

直线BC的方程为(截距式): x/(-2) + y/2 = 1, 取x = 1, y = 3

E(1, 3)

(b)∠DCE=45°

CD的斜率为k1 = (2-0)/(0-1) = -2

设CE的斜率为k2, tan∠DCE = 1 = |(k2 - k1)/(1+k1*k2)|

|k2 + 2| = |1-2k2|

k2 + 2 = 1 - 2k2, k2 = -1/3

k2 + 2 = 2k2 -1, k2 = 3 (画个草图可知,此时∠DCE=135°,舍去)

CE的方程为(斜截式): y = -x/3 + 2

取x = 1, y = 5/3

E(1, 5/3)