(n+1)³-n³=(n³+3n²+3n+1)-n³=3n²+3n+1,则:
2³-1³=3×1²+3×1+1
3³-2³=3×2²+3×2+1
4³-3³=3×3²+3×3+1
5³-4³=3×4²+3×4+1
6³-5³=3×5²+3×5+1
…………
(n+1)³-n³=3×n²+3×n+1
上面所有的式子相加,得:
(n+1)³-1³=3×[1²+2²+3²+…+n²]+3×[1+2+3+…+n]+n
(n+1)³-1=3Sn+3×[n(n+1)/2]+n
得:
Sn=[n(n+1)(2n+1)]/6