设A(x1,y1)B(x2,y2)C(x3,y3),AB=c,BC=a,AC=b,内心为I,AI交BC于D,BI交AC于E,CI交AB与F
由平面几何性质得BD/DC=c/b,AF/FB=b/a,AE/EC=c/a
由梅捏劳斯定理得到AF/FB*BC/CD*DI/IA=1
b/a*(b+c)/b*DI/IA=1 DI/IA=a/(b+c) DI=IA*a/(b+c)
BD=c/b*DC D ((x2+c/b*x3)/(1+c/b),(y2+c/b*y3)/(1+c/b))
(bx2+cx3/b+c,by2+cy3/b+c)
Xi=[(bx2+cx3)/(b+c)+a/(b+c)*x1]/[1+a/(b+c)]
Yi=[(cy2+by3)/(b+c)+a/(b+c)*y1]/[1+a/(b+c)]
I((ax1+bx2+cx3)/(a+b+c),(ax1+bx2+cx3)/(a+b+c))
那么由此,代入坐标就可以求出:
a*向量AI+b*向量BI+c*向量CI=0
///梅涅劳斯定理:
如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1.
证明:
过点A作AG‖BC交DF的延长线于G
AF/FB=AG/BD ,BD/DC=BD/DC ,CE/EA=DC/AG
三式相乘得:
AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1