f(n)=n+f(n-1)
f(1)+f(2)+...+f(n)=(1+2+3+...+n)+(f(0)+f(1)+f(2)+...+f(n-1))
f(n)=f(0)+(1+2+3+...+n)
=n(n+1)/2
1/f(n)=2/n -2/(n+1)
1/f(1)+1/f(2)+1/f(3)+.+1/f(n)]
=(2/1-2/2)+(2/2-2/3)+(2/3-2/4)+...+(2/n-2/(n+1))
=2-2/(n+1)
lim[1/f(1)+1/f(2)+1/f(3)+.+1/f(n)]
=2-lim[2/(n+1)]
=2