已知函数y=f(n),n∈N,满足f(n)=n+f(n-1),f(0)=0.试求lim[1/f(1)+1/f(2)+1/
收藏:
0
点赞数:
0
评论数:
0
2个回答

f(n)=n+f(n-1)

f(1)+f(2)+...+f(n)=(1+2+3+...+n)+(f(0)+f(1)+f(2)+...+f(n-1))

f(n)=f(0)+(1+2+3+...+n)

=n(n+1)/2

1/f(n)=2/n -2/(n+1)

1/f(1)+1/f(2)+1/f(3)+.+1/f(n)]

=(2/1-2/2)+(2/2-2/3)+(2/3-2/4)+...+(2/n-2/(n+1))

=2-2/(n+1)

lim[1/f(1)+1/f(2)+1/f(3)+.+1/f(n)]

=2-lim[2/(n+1)]

=2

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识