(1)由题意可知P、W、Q分别是△FMN三边的中点,
∴PW是△FMN的中位线,即PW∥MN,
∴
QW
MF
=
PW
MN
=
PQ
NF
=
1
2
,
∴△FMN∽△QWP;
(2)由(1)得,△FMN∽△QWP,
∴当△QWP为直角三角形时,△FMN为直角三角形,反之亦然.
由题意可得DM=BN=x,AN=6-x,AM=4-x,
由勾股定理分别得FM2=4+x2,MN2=(4-x)2+(6-x)2,
过点N作NK⊥CD于K,
∴CK=BN=x,
∵CF=CD-DF=6-2=4,
∴FK=4-x,
∴FN2=NK2+FK2=(4-x)2+16,
①当MN2=FM2+FN2时,(4-x)2+(6-x)2=4+x2+(4-x)2+16,
解得x=
4
3
,
②当FN2=FM2+MN2时,(4-x)2+16=4+x2+(4-x)2+(6-x)2
此方程无实数根,
③FM2=MN2+FN2时,4+x2=(4-x)2+(6-x)2+(4-x)2+16,
解得x1=10(不合题意,舍去),x2=4,
综上,当x=
4
3
或x=4时,△PQW为直角三角形